Penerapan Rocchio Classification dalam Klasifikasi Testimoni Pelanggan Taksi
Keywords:
Testimoni, Rocchio Classification, KlasifikasiAbstract
Testimonials are expressions of users of products or services in the form of satisfaction or laughter. When testimonials contain satisfaction, it can be the attraction of a product or service in getting consumers. Conversely, if the testimonial is in the form of disappointment then it becomes an evaluation material and a big task for the owner or management of the company to improve the services that have been provided. Testimonials we can get from social media such as twitter, instagram, etc. Testimonial classification by reading and classifying manually is not effective if testimonials in large numbers. Therefore, in terms of assisting the evaluation of services that have been provided, testimonial classification is carried out by applying the Rocchio Classification algorithm. Testimonials used in this study are testimonials of taxi customers obtained from twitter. The data is processed in the preprocessing stage, tf-idf, classification process. The results showed that Rocchio has a fairly high accuracy of 80%, an average precession of 83.40%, an average recall of 63.28%, an average f-measure of 65.16%.
Downloads
References
[2] A. P. Tindi, A.P., Papuas, A. and Nababan, “Optimalisasi Feedback Query Istilah Kultur dan Subkultur terhadap Konten Bahasa Resmi Menggunakan Metode Rocchio Relevace Feedback ( Feedback Query Optimization of Culture Terms and Subculture Content of The Official Language Using Rocchio Relevace Feedba,†J. Ilm. Tindalung, vol. 2, pp. 54–57, 2016.
[3] A. Afriza and J. Adisantoso, “Metode Klasifikasi Rocchio untuk Analisis Hoax,†J. Ilmu Komput. dan Agri-Informatika, vol. 5, no. 1, p. 1, 2018.
[4] E. A. Widjojo, A. Rachmat C, and R. G. Santosa, “Implementasi Rocchio’s Classification dalam Mengkategorikan Renungan Harian Kristen,†J. Ultim., vol. 6, no. 1, pp. 1–8, 2014.
[5] R. R. A. Siregar, Z. U. Siregar, and R. Arianto, “Klasifikasi Sentiment Analysis Pada Komentar Peserta Diklat Menggunakan Metode K-Nearest Neighbor,†Kilat, vol. 8, no. 1, pp. 81–92, 2019.
[6] C. D. Manning and P. Raghavan, “An Introduction to Information Retrieval,†2009.
[7] F. Sebastiani, “Machine Learning in Automated Text Categorization,†ACM Comput. Surv., vol. 34, no. 1, pp. 1–47, 2002.
[8] X. Hu and H. Liu, “Text analytics in social media,†in Mining Text Data, C. C. Aggarwal and C. Zhai, Eds. Springer US, 2012, pp. 385–414.
Downloads
Published
Issue
Section
License
Jurnal Teknologi dan Informatika (Teknomatika) is licensed under CC BY-SA 4.0





