Penerapan NLP untuk Menganalisis Komentar Publik pada Pelantikan Menteri di Kanal Sekretariat Presiden
Penerapan NLP untuk Menganalisis Komentar Publik pada Pelantikan Menteri di Kanal Sekretariat Presiden
DOI:
https://doi.org/10.61423/teknomatika.v15i02.934Keywords:
Natural Language Processing, Opini Publik, Analisis SentimenAbstract
Penelitian ini menerapkan Natural Language Processing (NLP) untuk menganalisis 465 komentar publik pada siaran pelantikan menteri 17 September 2025 di kanal YouTube Sekretariat Presiden. Tujuan penelitian adalah mengidentifikasi distribusi sentimen, topik dominan, dan kata kunci yang merefleksikan opini masyarakat. Data dikumpulkan melalui scraping, kemudian diproses melalui tahap pembersihan teks, representasi TF-IDF, analisis frekuensi n-gram, analisis sentimen berbasis leksikon, dan pemodelan topik Latent Dirichlet Allocation (LDA). Hasil menunjukkan mayoritas komentar bersentimen netral (94,2%), dengan topik utama mencakup kepemimpinan, isu pergantian pejabat, dan persepsi publik terhadap kinerja menteri baru. Temuan ini menegaskan efektivitas metode NLP dalam memahami opini politik digital dan memberikan masukan strategis bagi pemerintah dalam merancang komunikasi publik yang responsif.
References
[2] A. Bastian, R. F. Ramadhan, and D. P. Kusuma, “Sentiment Analysis of Public Comments on YouTube Regarding the Inaugural Speech of the 8th President of Indonesia Using VADER and BERT Methods,” International Journal of Science, Engineering and Computer Science (IJSECS), vol. 5, no. 1, pp. 23–31, 2025. https://ijsecs.org/index.php/ijsecs/article/view/512.
[3] H. F. Maulana, “Sentiment Analysis and Topic Modeling of Twitter Discussion among Indonesian Presidential Candidates,” Jurnal Pekommas, vol. 8, no. 1, pp. 67–78, 2025. [Online]. Available: https://jurnal.kominfo.go.id/index.php/pekommas/article/view/4492.
[4] D. Prastyo and L. Cahyani, “Klasifikasi Sentimen Komentar YouTube dengan NLP terhadap Debat Pilkada Banten 2024,” Banten Technology Journal, vol. 6, no. 2, pp. 55–64, 2024. https://ejournal.bantenprov.go.id/index.php/bt-journal/article/view/302.
[5] N. Munasatya and S. Novianto, “Natural Language Processing untuk Analisis Sentimen Presiden Jokowi Menggunakan Multi Layer Perceptron,” Technoc, vol. 19, no. 3, pp. 155–164, Aug. 2020. https://ejournal.undip.ac.id/index.php/technoc/article/view/28476.
[6] F. I. Fitriani, R. Agustin, and A. N. Prasetyo, “Analisis Sentimen Komentar YouTube tentang Terpilihnya Menteri Kabinet Indonesia Maju menggunakan Lexicon-Based,” eProceedings of Engineering (Telkom University), vol. 7, no. 2, pp. 11245–11252, 2020. https://openlibrary.telkomuniversity.ac.id/home/catalog/id/153192.
[7] A. N. Ma’aly, A. R. Setiawan, and H. S. Pratama, “Exploring Sentiment Analysis for the Indonesian Political Contest Using Deep Learning Models,” Information, vol. 15, no. 3, p. 111, Mar. 2024. https://doi.org/10.3390/info15030111.
[8] H. F. Maulana, “Sentiment Analysis and Topic Modeling of Twitter Discussion among Indonesian Presidential Candidates,” Jurnal Pekommas, vol. 8, no. 1, pp. 67–78, 2025. https://jurnal.kominfo.go.id/index.php/pekommas/article/view/4492.
[9] D. Prastyo and L. Cahyani, “Klasifikasi Sentimen Komentar YouTube dengan NLP terhadap Debat Pilkada Banten 2024,” Banten Technology Journal, vol. 6, no. 2, pp. 55–64, 2024. https://ejournal.bantenprov.go.id/index.php/bt-journal/article/view/302.
[10] A. Bastian, R. F. Ramadhan, and D. P. Kusuma, “Sentiment Analysis of Public Comments on YouTube Regarding the Inaugural Speech of the 8th President of Indonesia Using VADER and BERT Methods,” International Journal of Science, Engineering and Computer Science (IJSECS), vol. 5, no. 1, pp. 23–31, 2025. https://ijsecs.org/index.php/ijsecs/article/view/512
[11] A. N. Ma’aly, A. R. Setiawan, and H. S. Pratama, “Exploring Sentiment Analysis for the Indonesian Political Contest Using Deep Learning Models,” Information, vol. 15, no. 3, p. 111, Mar. 2024. https://doi.org/10.3390/info15030111
[12] F. I. Fitriani, R. Agustin, and A. N. Prasetyo, “Analisis Sentimen Komentar YouTube tentang Terpilihnya Menteri Kabinet Indonesia Maju menggunakan Lexicon-Based,” eProceedings of Engineering (Telkom University), vol. 7, no. 2, pp. 11245–11252, 2020. https://openlibrary.telkomuniversity.ac.id/home/catalog/id/153192.
[13] N. Munasatya and S. Novianto, “Natural Language Processing untuk Analisis Sentimen Presiden Jokowi Menggunakan Multi Layer Perceptron,” Technoc, vol. 19, no. 3, pp. 155–164, Aug. 2020. https://ejournal.undip.ac.id/index.php/technoc/article/view/28476. .
Downloads
Published
Issue
Section
License
Jurnal Teknologi dan Informatika (Teknomatika) is licensed under CC BY-SA 4.0