Analisis Teknik Data Mining “Algoritma C4.5 Dan K-Nearest Neighbor†Untuk Mendiagnosa Penyakit Diabetes Mellitus

Authors

  • Karyono STMIK AMIKOM Purwokerto

Keywords:

Diabetes Mellitus, Algoritma C4.5, KNearest Neighbor (KNN)

Abstract

Penyakit diabetes mellitus (DM) merupakan masalah kesehatan yang serius baik di Indonesia maupun di dunia. Teknik data mining telah banyak dilakukan untuk membantu diagnosa penyakit diabetes mellitus. Makalah ini berisi perbandingan algortima C4.5 dan K-Nearest Neighbor (KNN) yang digunakan untuk mendiagnosa penyakit diabetes mellitus. Data set yang digunakan indian pima. Hasil penelitian menunjukan 76.105% dengan nilai precision 0.755%, recall 0.761%, F-measure 0.755% pada algoritma C4.5 dan 79.1436% pada algoritma KNN dengan precision 0.788%, recall 0.791%, F-measure 0.789%
Kata kunci – Diabetes Mellitus, Algoritma C4.5, KNearest
Neighbor (KNN)

References

[1] Setiawan Meddy, “Buku Ajar Endokrin, Malang, FK:UMM
[2] Depkes RI, “Profil Keseheatan Indonesia”, Jakarta: Depkes RI, 2009.
[3] Witten, I. H, Frank, E., & Hall, M. A, “Data Mining Practical Machine”, Burlington:Elsevie, 2011.
[4] Huy Nguyen Anh Pham and Evangelos Triantaphyllous, “Predicition of Diabetes by Employing New Data Mining Approach Which Balances Fitting and Generalization”, Springer, 2008.
[5] Muhammad Waqar Aslam dan Asoke Kumar Nandi, “Detection of Diabetes Using Genetic Programming”, Euorpean Signal Processing Conference (EUSIPCO-2010), ISSN 2076-1465.
[6] S. Sapna, Dr. A. Tamilarasi dan M Pravin Kumar, “Implementation of Genetic Algoritm Predicting Diabetes”, International Journal of Computer Science, Vol 9 Issue 1, No.3 January 2012.
[7] Arwa Al-Rofiyee, Maram Al-Nowiser, Nasebih Al Mufad, Dr. Mohammed Abdullah Al-Hagery, “Using Prediction Methods in Data Mining for Diabetes Diagnosis”,
http://www.psu.edu.sa/megdam/sdma/Downloads/Posters/Poster%2003.pdf, diakses tanggal 16 April 2016
[8] Jayanto, Yusnita Asri, “Sistem Pendukung Keputusan Pendeteksian Penyakit Diabetes dengan Metode Decision Tree Menggunakan Algoritma Iterative Dichotomiser 3(ID3)”, Universitas Pembangunan Nasional “Veteran”, 2011
[9] Aswinkumar.U.M and Dr. Anandakumar K.R, “Predicting Eearly Detection of Cardiac and Diabetes Symptoms Using Data Mining Techniques”, International Conference on Computer Design and Engineering, Vol. 49, 2012
[10] Rupa Bagdi, Prof. Pramod Patil, “Diagnosis of Diabetes Using OLAP and Data Mining Integration”, International
Journal of Computer Science & Communication Networks, Vol 2(3), pp. 314-322, 2012
[11] Murat Koklu and Yauz Unal, “Analysis of a Population of Diabetic Patients Databases with Classifiers”, International Journal of Medical, Health, Pharmaceutical and Biomedical Engineering”, Vol. 7 No. 8, 2013.
[12] Veena vijayan, Aswathy Ravikumar, “Study of Data mining Algoritms for Prediction and Diagnosis of Diabetes Mellitus”,International Journal of Computer Applications (0975-8887), vol. 95-No.17, June 2014
[13] Mohtaram Mohammadi, Mitra Hosseini, Hamid Tabatabaee, “Using Bayesian Network for The Prediction and Diagnosis of Diabetes”, Bull. Env. Pharmacol. Life Sci., Vol 4[9]August 2015
[14] P. Radha, Dr. B. Srinivasan, “Predicting Diabetes by Consequencing the Various Data Mining Classification Technique”, International Journal of Innovative Science, Engineering & Technology, Vol. 1 Issue 6, August 2014, pp. 334-339.
[15] Gorunescu, F, “Data Mining Concepts, Models and Techniques”, Verlah Berlon Heidelberg:Spinger, 2011.
[16] Lestari, Mei, “Penerapan Algoritma Klasifikasi Nearest Neighbor (K-NN) untuk mendeteksi penyakit jantung”, Faktor Exacta 7(4): 366-371, ISSN:1979-276X, 2014
[17] Lesmana, I Putu Dody, “Perbandingan Kinerja Decision Tree J48 dan ID3 dalam Pengklasifikasian Diagnosis Penyakit Diabetes Mellitus”, Jurnal Teknologi dan Informatika, Vol. 2
No.2 Mei 2012.

Downloads