H* Transformasi Citra Digital Untuk Mendapatkan Kompresi Optimal Dengan Metode Lossless
DIGITAL IMAGE TRANSFORMATION TO GET OPTIMAL COMPRESSION USING LOSSLESS METHODE
Abstract
Previous topics of compression research have largely focused on compressions of compression methodes in terms of compression ratios. This research provides the need for a stage before compression, namely the need for a transformation process of the test image to obtain aminimum file size before compression, so that when compressed it will produce the minimum file size, which in this study is called optimal compression. The test image referred to in this research are two images that have different color structures and shapes, which are distinguished in regular and irregular images. The results showed that by transforming the test image through rotation, the compressed image size was 5,8682 kB, while without transformation it was 6,1553 kB for regular images, with a rotation of 90 degrees. Meanwhile for irregular images with a 180 degree rotation, the compressed file size is 5,2236 kB, while without transformation it is 5,419 kB.References
Aldo and L. Hakim, “Implementasi Steganografi Pada Citra Digital dan Kriptografi Algoritma Hill Cipher Untuk Pengamanan Informasi Berupa Text,†Jurnal Ilmiah Teknologi Informasi Terapan, vol. V, no. 1, pp. 6–17, 2018.
V. Lusiana, “Teknik Kompresi Citra Digital untuk Penyimpanan File menggunakan Format Data XML,†Teknologi Informasi DINAMIK, vol. 19, no. 2, pp. 112–119, 2014.
A. Rosadi, S. Informasi, and S. J. Sti, “Aplikasi Kompresi Citra Dengan Matlab R2015a Menggunakan Metode Discrete Cosine Transform (DCT) dan Kuantisasi,†Jurnal Ilmiah Komputasi, vol. 17, no. 1, pp. 21–34, 2018, doi: 10.32409/jikstik.17.1.2339.
N. Nafi’iyah, “Algoritma Kohonen dalam Mengubah Citra Graylevel Menjadi Citra Biner,†Jurnal Ilmiah Teknologi Informasi Asia, vol. 9, no. 2, pp. 49–55, 2015, [Online]. Available: https://jurnal.stmikasia.ac.id/index.php/jitika/article/view/125.
S. M.Kom., “Analisis Enkripsi Citra Digital Menggunakan Algoritma Logistic Map Dengan Algoritma Kompresi Lampel-Ziv-Welch (Lzw),†InfoTekJar (Jurnal Nasional Informatika dan Teknologi Jaringan), vol. 1, no. 2, pp. 95–99, 2017, doi: 10.30743/infotekjar.v1i2.69.
P. Studi, I. Komputer, P. Pascasarjana, and U. P. Ganesha, “Steganografi Berdasarkan Metode Least Significant Bit ( Lsb ),†Jurnal Ilmu Komputer Indonesia (JIKI), no. 1, pp. 34–40, 2019.
B. D. Raharja and P. Harsadi, “Implementasi Kompresi Citra Digital Dengan Mengatur Kualitas Citra Digital,†Jurnal Ilmiah SINUS, vol. 16, no. 2, pp. 53–58, 2018, doi: 10.30646/sinus.v16i2.363.
E. Prayoga and K. M. Suryaningrum, “Implementasi Algoritma Huffman Dan Run Length Encoding Pada Aplikasi Kompresi Berbasis Web,†Jurnal Ilmiah Teknologi Informasi Terapan, vol. IV, no. 2, pp. 92–101, 2018.
A. Pahdi and S. Banjarbaru, “Algoritma Huffman Dalam Pemampatan Dan Enksripsi Data,†Ijns.org Indonesian Journal on Networking and Security, vol. 6, 2017.
J. P. I. William, Introduction to MatLab for Engineers. Rhode Island: Mc Graw Hill, 2011.
