Metode K-Means SAW dalam Seleksi Penerima Dana akat pada Badan Amil akat

  • Yunita Universitas Sriwijaya
  • Rusdi Efendi Universitas Sriwijaya
  • Dian Palupi Rini Universitas Sriwijaya
Keywords: Zakat, K-Means Clusteing, SAW

Abstract

akat is an obligation for Muslims as the implementation of the Five Pillars of Islam including sadaah and infa. The higher the communitys awareness to pay zakat, the more amil zakat boards establish in the community, one of them is Pertaminass amil zakat body (BAMA) in Palembang. The problem currently encountered is that the determination of the recipient of zakat funds must compare the results of the survey one by one so that it is obtained who is most entitled to receive the zakat funds. This procedure may cause relatively high complexity both of time, the accuracy of the results and may affect the target recipient of zakat. The purpose of this study is to minimize the mistakes of BAMA officers in the distribution of zakat funds, so that a decision support system is needed in determining the recipient of zakat funds where the system has been determined based on criteria. K-Means Clustering is a method that groups data according to each cluster. Simple Additive Weighting (SAW) is a method used for the ranking process by using preference values. In this study, the K-Means Clustering method will divide the zakat recipient data according to the distance calculated from the initial position between the zakat recipient data, then the SAW method will sort the zakat recipient data based on each cluster.

References

[1] Ratnawati, D. E., Marji lailil, M., 2014. Pengembangan Metode Klasifikasi Berdasarkan K-Means dan LV. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), 1(1), pp. 1-4.
[2] Astradanta, M., Wirawan, I. M. A. Arthana, I. K. R., 2016. Pengembangan Sistem Penunjang Keputusan Pemilihan Tempat Kuliner Dengan Menggunakan Metode AHP Dan SAW Studi Kasus : Kecamatan Buleleng. Kumpulan Artikel Mahasiswa Pendidikan Teknik Informatika, 5(2).
[3] Masruro, A. Wibowo, F. W., 2016. Intelligent Decision Support System For Tourism Planning Using Integration Model Of K-Means Clustering And TOPSIS. International Journal of Advanced Computational Engineering and Networking, 4(1), pp. 52-57.
[4] Faisal, 2015. Sistem Penunjang Keputusan Pemilihan Perangkat Pemrosesan Data Menggunakan Metode Analytical Hierarchy Process (AHP) Dan Multi-Criteria Decision Making (MCDM). Seminar NasionalProsiding Konferensi Nasional Sistem Informasi.
[5] Raymond McLeod,Jr. 2001. Sistem Informasi Edisi 7 Jilid 2. Prenhallindo. Jakarta.
[6] Daniati, E. Nugroho, A., 2016. K-Means Clustering With Decision Support System Using SAW. International Conference on Control System, Computing and Engineering, Volume 6, pp. 326-331.
[7] Pratiwi, D., Lestari, J. P. Agushinta, D., 2014. Decision Support System to Majoring High School Student Using Simple Additive Weighting Method. International Journal of Computer Trends and Technology (IJCTT), 10(3), pp. 153-159.
Published
2019-11-07